根据预测的马拉松完成时间(2:10-3:00小时),随着WBGT温度的升高,坐标系呈现潜在的运动表现下降。5-10°C的WBGT的环境条件变动量主要是针对运动表现较佳的跑者设定。当环境条件变暖时,运动表现会下降,对跑得慢的人影响更大。例如,2020年美国男子和女子马拉松选拔赛的资格标准分别是2:19:00和2:45:00。在近乎理想的天气条件下(5°C WBGT),具备这些合格标准的跑者,预计WBGT每增加5°C,其速度就会降低1-2%。当WBGT为15°C时,这相当于男性慢2%(2:19:00至2:21:46)和女性慢4%(2:45:00至2:51:36)。这种减速并不是由性别决定的,因为随着环境温度的升高,男性和女性的跑步速度都会减慢,因此同样适用于2:19的女性跑者和2:45的男性跑者。经Ely等人许可转载2007。

高温下表现下降的生理学

跑步表现下降和过早疲劳是由多种生理和心理因素造成的。研究人员研究热应激的生理限制表现,通常研究的方向是大脑温度升高的影响,或者是心血管的变化,用来给收缩的骨骼肌供血与维持皮肤血流量以供降温。有些运动生理学家争论说,主要原因是在温热的环境下运动表现会下降。高温引起的疲劳病因学似乎涉及心血管变化、外周(肌肉)和中枢这些因素之间复杂的相互影响。因素包括核心温度升高,皮肤温度升高和皮肤血流量增加,核心和皮肤温度升高的结合、汗液流失引起的进一步脱水,或者一些输入大脑的信号来减少热量生产避免灾难性的血压或者内部温度危机(预期监管)。

内部温度升高

在几项研究证实了在40℃的“临界”核心温度下,热应激疲劳发生之后,由于核心温度升高而导致的耐力或工作能力下降的概念得到了证实。这个温度也与劳累型中暑,以及脑电波和运动神经输出变化有关。符合一个解释:当核心温度超过40°C时,身体发生保护,防止严重性的中暑或至少标志着运动表现逐渐下降的边缘。虽然大脑温度升高(≧40°C)会降低运动表现,但在核心温度为40°C的情况下,表现急剧下降的观点却遭到了许多报告的反驳,文献中众多直肠温度为40°C运动员,他们依然有高水平的运动表现。这一临界核心温度的概念在高水平的跑者中进行了一项8公里测试,在凉爽(WBGT~13°C)和温热条件下(WBGT~27°C)持续监测直肠温度、皮肤温度和心率。8公里测试结束时,核心温度在温热条件下略高(比凉爽条件下高0.5°C),而皮肤温度高出许多(比凉爽条件下高4°C)。在温热条件下,整体表现大大低于在凉爽条件下的运动表现(在凉爽条件下,8公里的平均速度比他们的个人最佳速度慢1.5%,而温暖的条件下,8k的平均速度比他们的个人最佳速度慢7.9%)。然而,当核心温度在40℃左右时,无论在凉爽或温热条件下,个人的平均跑步速度没有差异。此外,没有证据表明跑者在预期避免超过内部温度阈值时,会根据核心温度上升的速度调整速度。

相反地,为了区分高温下核心温度和皮肤温度对运动表现的影响,一个短时间的运动表现测试(15分钟的测试,类似于3000 - 5000米的比赛表现)在高温(40°C和20%相对湿度)和温和的情况下(20°C和50%相对湿度),两种情况的核心温度保持在38.5°C以下,但在高温下,平均皮肤温度更高(+5°C;31°C对36 °C)。重要的是,这个研究还仔细控制了水合作用,发现在高温下,整体表现(图2)和速度策略都受到了严重影响。这些研究表明,在高温下,核心温度升高导致表现下降可能是被高估的主要因素,反而皮肤温度升高与表现下降有很大的关系。皮肤温度升高影响的一个推论是,在高温下疲劳会随着核心和皮肤温度的上升而发生,从而缩小允许与环境进行热量交换的温度差。核心温度和皮肤温度的交互作用,以及个体间的差异,导致核心温度的维持(38 - 42℃),其中可能发生与热相关表现下降或衰竭现象。

在高温(40°C)和温和(20°C)情况下,全部任务在15分钟内测试完成的结果,两种情况下水合作用良好,核心温度没有差异。每个点代表一个人在高温(X轴)和温和情况下(Y轴)所做的功。结果显示所有受测者在高温下所做的功更少,比温和下平均低17%(图中右下角)。*表示两组之间的显着差异(p<0.05)这说明了即使在没有核心温度升高的情况下,热应激对有氧运动表现的实质性影响。图改编自Ely等人,2010年。

皮肤温度的提高与血流量的增加

在凉爽环境下锻炼时,自主神经系统使皮肤血管收缩,使血液重新分配到收缩的骨骼肌中,同时保持足够的中心容量。然而,当一个人在高温下跑步时,皮肤血管不收缩,出现交感神经性收缩被抑制(主动血管舒张)现象,通常与出汗反应相一致。相对适应皮肤循环的血管舒张减少了中心血容量、每搏输出量和心输出量。在温热天气,一定跑速下,较高的心率可以部分弥补这一缺陷,但是心率的提高通常不足以在血液流向收缩的肌肉时,维持血压稳定的情况下为皮肤散热。在轻微的热环境下,将血液输送到皮肤和收缩的肌肉中带来的心率上升,与本体感觉提升和运动表现下降有关。在更严重的环境热应激中,这种心输出量的再分配、皮肤和收缩骨骼肌之间血流量的竞争,加上维持中心容量和血压的自主机制,导致最大供氧量的减少。反过来, 相比在凉爽条件下这将导致最大摄氧量的下降(V̇O2max)。

脱水

上文所述的在高温下跑步时,血液同时流向收缩的骨骼肌和温热皮肤之间的作用机制,再加上由于体温调节出汗而造成的水分流失进一步加剧了这种竞争情况。随着时间的推移,血浆容量的减少和对这种逐渐减少的血容量的竞争对维持静脉回流、中心容量、心输出量和血压造成了更大的挑战。在温暖的(25°C)半马比赛中,运动员即使经常在救护站补充水分的情况下,通过出汗依然可以很容易地减掉2-3%的体重。在凉爽的条件下,身体水分流失1-2%的体重会降低表现,而这种表现下降量会随着环境温度的升高而显着增加。虽然在高温下跑步规律地补充水分可以最大程度地减少脱水,但随意补充水分通常不能弥补汗液的流失。例如,在温暖、温和和凉爽的环境中,受过训练的女性在跑步机上以马拉松的速度跑30公里,平均损失70%的体液,这导致了3%的体重损失。一项研究检测了观察到几名运动员在高温下2小时跑步中有较高的液体摄入量,但发现了胃肠道的不适,这表明在高温下跑步比赛中,将出汗损失与液体补充完全匹配可能是困难的。然而,适当的赛前补水和比赛中随机性地补水可以帮助减少在高温中由于中心容量减少和体温升高而导致的表现下降。

提高高温中跑步表现的热适应

热适应,或反复处于运动-热环境压力中锻炼,是专门针对在特定环境中发展与建立以延长个人在高温下的运动能力。在5-14天的时间里,这些反复的运动-热暴露(在温热的环境中进行60 - 100分钟中等强度的运动),导致了休息时核心温度的降低和运动过程中体温的缓慢上升,在固定运动量下心率降低,出汗能力增加,血浆容量增加。在固定强度的运动中,散热能力的提高降低了热量的储存,而核心温度的缓慢上升延迟了力竭的时间。同样地,在自我控制速度的运动中,散热能力的提高也会提高运动强度和代谢热量的产生。同时,这些适应性降低了体温调节负担,提高了身体在高温下的表现。

在职业环境中制定的热适应程序可以很容易地应用到准备参加高温比赛的运动员身上,各种运动-热适应方案和时间表似乎可以提高高温下的跑步表现。热适应可以通过使用设置好的炎热干燥或温暖潮湿的环境舱,通过在温热的气候下室外跑步的自然适应,或可能通过在温暖的条件下锻炼时增加保暖衣物(过度穿着)来进行。传统以实验室为基础的热适应可以对条件进行精确控制,而在高温下进行户外运动可能对准备高温下比赛的团队更实用。对于生活和训练在更温暖的气候,没有机会进入环境舱的运动员也可通过过度穿着获得一些热适应的好处。关于过度穿着的研究指出使用较重的衣服和室内跑步机跑步有较高的生理压力和耐热性的提高,而使用较轻衣服和户外运动有较小的热增量变化和没有变化耐热性。热适应的过程需要反复暴露在3个关键的刺激下:升高的内部温度,升高的皮肤温度和在皮肤表面产生的汗液。由于运动员在相对较冷的环境下进行高强度训练时,可能会定期经历这三种刺激,因此,与久坐不动的人相比,跑者被认为是“部分热适应”。这意味着,一个训练有素的运动员在准备高温的比赛时,可以在短短5天内看到热适应带来的体温调节的好处,而未经训练的人则需要更长的适应期(7-14天)。由于在高温下运动比在凉爽环境下要构成更大的训练压力,因此最小限度的热暴露是一个重要的考虑因素,特别是因为热适应通常习惯在赛前逐渐变弱。

随着运动热适应的增加,在逐渐变弱运动员身上的过度压力引起了人们的关注,从而导致了被动热适应策略的创新。在运动后核心温度已经升高时,建议运动员立即进行被动热适应训练,包括桑拿或热水浸泡。最近的研究表明,只要连续6天,在温和的条件下40分钟的跑步机训练后,在热水中浸泡,无论是高水平男性跑者还是一般水平跑者,他们的耐热性和血浆容量都会提升。虽然没有专门研究高温下的表现,但训练有素的男性跑者在3周运动后做桑拿增加了血浆容量,并在温和条件下模拟5000米的跑步中提高了表现。血浆容量的增加,特别是在冷环境下,可能提高最大表现,虽然这不是很普遍地发生在每个运动员身上。

因此,热适应可以缓解高温下表现下降。降低基础体温和在运动中缓慢的升温可以减缓身体过热,通过加大核心与皮肤的温度差,增加出汗反应促进热量交换。增加的血浆容量使皮肤和肌肉有更大的血流量,增加出汗反应(图3)。这意味着在轻微的热应激中,运动表现可能会比在较冷环境下进行热适应保持得更好。然而,对于更严重的热应激,热适应可以减轻但不能消除热相关的表现下降。

高温的影响

热适应

↑内部温度↑皮肤温度与血液流量↓汗液蒸发导致的中心血 流 量↑心率↓最大心输出量↓运动表现

↓内部温度↑出汗的效益↓皮肤温度与血液流量↑血浆容量维持中心容量↓心率↑最大心输出量↑运动表现

热相关的跑步表现下降的生理学基础总结,以及热适应可以通过减少体温调节和心血管压力来提升高温下跑步表现的机制。

总结

高强度跑步产生的代谢热量必须通过适当的热量损失来抵消。当身体与环境之间的温差变小时,散热的能力减弱,更多的代谢热量被储存,体温上升。这意味着环境可以在相对较低的温度下开始影响跑步表现,而随着环境温度的升高,跑步表现将继续下降。主要的因素包括体内温度升高、皮肤血流量增加以及通过调节体温出汗导致的进一步的液体流失。热适应,通过反复主动或被动热刺激,可以帮助减少热相关的表现下降。

作者介绍 //

Brett R. Ely

塞勒姆州立大学体育与运动科学助理教授

Brett R. Ely

俄勒冈大学人类生理学博士候选人

译者:黄恩义

CSCS

校对:林冠廷

美国肌力与体能协会-体能训练专家 NSCA-CSCS

日本肌内效协会贴扎指导员认证

台湾运动伤害防护师资格认证

国家职业技能大赛-运动防护组裁判

德国筋膜滚筒导师认证 BLACKROLL Master Trainer

1. Adams WC, Fox RH, Fry AJ, and MacDonald IC. Thermoregulation during marathon running in cool, moderate, and hot environments. J Appl Physiol 38: 1030–1037, 1975.

2. Armstrong LE, Casa DJ, Millard-Stafford M, et al. ACSM position stand: Exertional heat illness during training and competition. Med Sci Sports Exerc 39: 556–572, 2007.

3. Arngr ́ımsson SA, Stewart DJ, Borrani F, Skinner KA, and Cureton KJ. Relation of heart rate to percent VO2 peak during submaximal exercise in the heat. J Appl Physiol 94: 1162–1168, 2003.

4. Buono MJ, Numan TR, Claros RM, Brodine SK, and Kolkhorst FW. Is active sweating during heat acclimation required for improvements in peripheral sweat gland function? Am J Physiol Regul Integr Comp Physiol 297: R1082–R1085, 2009.

5. Byrne C, Lee JKW, Chew SAN, Lim CL, and Tan EYM. Continuous thermoregulatory responses to mass- participation distance running in heat. Med Sci Sport Exerc 38: 803–810, 2006.

6. Cheuvront SN and Haymes EM. Ad libitum fluid intakes and thermoregulatory responses of female distance runners in three environments. J Sports Sci 19: 845– 854, 2001.

7. Cheuvront SN and Sawka MN. Physical exercise and exhaustion from heat strain. J Korean Soc Living Environ Syst 8: 134– 145, 2001.

8. Chou TH, Allen JR, Hahn D, Leary BK, and Coyle EF. Cardiovascular responses to exercise when increasing skin temperature with narrowing of the core-to-skin temperature gradient. J Appl Physiol 125: 697–705, 2018.

9. Christensen CL and Ruhling RO. Thermoregulatory responses during

a marathon. A case study of a woman runner. Br J Sports Med 14: 131–132, 1980.

10. Cuddy JS, Hailes WS, and Ruby BC. A reduced core to skin temperature gradient, not a critical core temperature, affects aerobic capacity in the heat. J Therm Biol 43: 712, 2014.

11. Daries HN, Noakes TD, and Dennis SC. Effect of fluid intake volume on 2-h running performances in a 25 degrees C environment. Med Sci Sports Exerc 32: 1783–1789, 2000.

12. Dawson B. Exercise training in sweat clothing in cool conditions to improve heat tolerance. Sports Med 17: 233–244, 1994.

13. Dawson B and Pyke F. Artificially induced heat acclimation of team game players with sweat clothing: 1. Responses to wearing sweat clothing during exercise in cool conditions.

J Hum Mov Stud 15: 171–183, 1988.

14. Dawson B, Pyke FS, and Morton AR. Improvements in heat tolerance induced by interval running training in the heat and in sweat clothing in cool conditions. J Sports Sci 7: 189–203, 1989.

15. Ely BR, Blanchard LA, Steele JR, et al. Physiological responses to overdressing and exercise-heat stress in trained runners. Med Sci Sports Exerc 50: 1285–1296, 2018.

16. Ely BR, Cheuvront SN, Kenefick RW, and Sawka MN. Aerobic performance is degraded, despite modest hyperthermia, in hot environments. Med Sci Sports Exerc 42: 135–141, 2010.

17. Ely BR, Ely MR, Cheuvront SN, et al. Evidence against a 408C core temperature threshold for fatigue in humans. J Appl Physiol 107: 1519–1525, 2009.

18. Ely MR, Cheuvront SN, and Montain SJ. Neither cloud cover nor low solar loads are associated with fast marathon performance. Med Sci Sports Exerc 39: 2029–2035, 2007.

19. Ely MR, Cheuvront SN, Roberts WO, and Montain SJ. Impact of weather on marathon-running performance. Med Sci Sports Exerc 39: 487–493, 2007.

20. Fox RH, Goldsmith R, Kidd DJ, and Lewis HE. Acclimatization to heat in man by controlled elevation of body temperature. J Physiol 166: 530–547, 1963.

21. Gagge AP and Gonzalez RR. Mechanisms of heat exchange: Biophysics and physiology. In: Comprehensive Physiology. Hoboken, NJ: John Wiley & Sons, Inc., 2011.

22. Galloway SD and Maughan RJ. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc 29: 1240–1249, 1997.

23. Garrett AT, Goosens NG, Rehrer NJ, et al. Short-term heat acclimation is effective and may be enhanced rather than impaired by dehydration. J Hum Biol 26: 311–320, 2014.

24. Gibson OR, Mee JA, Tuttle JA, et al. Isothermic and fixed intensity heat acclimation methods induce similar heat adaptation following short and long-term timescales. J Therm Biol 49–50: 55–65, 2015.

25. Gisolfi CV and Cohen JS. Relationships among training, heat acclimation, and heat tolerance in men and women: The controversy revisited. Med Sci Sports 11: 56–59, 1979.

26. Gonza ́ lez-Alonso J, Crandall CG, and Johnson JM. The cardiovascular challenge of exercising in the heat. J Physiol 586: 45–53, 2008.

27. Gonzalez RR, Berglund LG, and Gagge AP. Indices of thermoregulatory strain for moderate exercise in the heat. J Appl Physiol Respir Environ Exerc Physiol 44: 889–899, 1978.

28. Hales J, Hubbard R, and Gaffin S. Limitations of heat tolerance. In: Handbook of Physiology. Fregley M and Blatteis C, eds. New York, NY: Oxford University Press, 1996.

29. Heathcote SL, Hassme ́n P, Zhou S, and Stevens CJ. Passive heating: Reviewing practical heat acclimation strategies for endurance athletes. Front Physiol 9: 1851, 2018.

30. El Helou N, Tafflet M, Berthelot G, et al. Impact of environmental parameters on marathon running performance. PLoS One 7: e37407, 2012.

31. Horvath SM and Shelley WB. Acclimatization to extreme heat and its effect on the ability to work in less severe environments. Am J Physiol 146: 336– 343, 1946.

32. Junge N, Jørgensen R, Flouris AD, and Nybo L. Prolonged self-paced exercise in the heat—Environmental factors affecting performance. Temperature 3: 539–548, 2016.

33. Kellogg DL, Johnson JM, and Kosiba WA. Competition between cutaneous active vasoconstriction and active vasodilation during exercise in humans. Am J Physiol 261: H1184–H1189, 1991.

34. Kellogg DL, Pe ́rgola PE, Piest KL, et al. Cutaneous active vasodilation in humans is mediated by cholinergic nerve cotransmission. Circ Res 77: 1222–1228, 1995.

35. Kenefick RW, Cheuvront SN, Palombo LJ, Ely BR, and Sawka MN. Skin temperature modifies the impact of hypohydration on aerobic performance. J Appl Physiol 109, 2010: 79–86.

36. Lorenzo S, Halliwill JR, Sawka MN, and Minson CT. Heat acclimation improves exercise performance. J Appl Physiol 109, 2010: 1140–1147.

37. Marino FE. Anticipatory regulation and avoidance of catastrophe during exercise- induced hyperthermia. Comp Biochem Physiol B Biochem Mol Biol 139: 561– 569, 2004.

38. Maron MB, Wagner JA, and Horvath SM. Thermoregulatory responses during competitive marathon running. J Appl Physiol 42: 909–914, 1977.

39. Mee JA, Gibson OR, Doust J, and Maxwell NS. A comparison of males and females’ temporal patterning to short- and long-term heat acclimation. Scand J Med Sci Sport 25: 250–258, 2015.

40. Minson CT and Cotter JD. CrossTalk proposal: Heat acclimatization does improve performance in a cool condition. J Physiol 594: 241–243, 2016.

41. Montain SJ, Ely MR, and Cheuvront SN. Marathon performance in thermally stressing conditions. Sports Med 37: 320– 323, 2007.

42. Nielsen B, Hales JR, Strange S, et al. Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J Physiol 460: 467–485, 1993.

43. Nielsen B and Nybo L. Cerebral changes during exercise in the heat. Sports Med 33: 1–11, 2003.

44. Nybo L. Hyperthermia and fatigue. J Appl Physiol 104: 871–878, 2008.

45. Nybo L and Lundby C. CrossTalk opposing view: Heat acclimatization does not improve exercise performance in a cool condition. J Physiol 594: 245–247, 2016.

46. Nybo L and Nielsen B. Hyperthermia and central fatigue during prolonged exercise in humans. J Appl Physiol 91: 1055–1060, 2001.

47. Pandolf KB and Goldman RF. Convergence of skin and rectal temperatures as a criterion for heat tolerance. Aviat Space Environ Med 49: 1095–1101, 1978.

48. Pereira ER, de Andrade MT, Mendes TT, et al. Evaluation of hydration status by urine, body mass variation and plasma parameters during an official half-marathon.

J Sports Med Phys Fitness 57: 1499– 1503, 2017.

49. Racinais S, Alonso JM, Coutts AJ, et al. Consensus recommendations on training and competing in the heat. Br J Sports Med 49: 1164–1173, 2015.

50. Regan JM, Macfarlane DJ, and Taylor NA. An evaluation of the role of skin temperature during heat adaptation. Acta Physiol Scand 158: 365–375, 1996.

51. Roberts WO. Determining a “do not start” temperature for a marathon on the basis of adverse outcomes. Med Sci Sport Exerc 42: 226–232, 2010.

52. Robinson S. Temperature regulation in exercise. Pediatrics 32(Suppl): 691–702, 1963.

53. Robinson S, Turrell ES, Belding HS, and Horvath SM. Rapid acclimatization to work in hot climates. Am J Physiol Content 140: 168–176, 1943.

54. Sawka MN, Francesconi RP, Young AJ, and Pandolf KB. Influence of hydration level and body fluids on exercise performance in the heat. JAMA 252: 1165–1169, 1984.

55. Sawka MN, Montain SJ, and Latzka WA. Hydration effects on thermoregulation and performance in the heat. Comp Biochem Physiol A Mol Integr Physiol 128: 679– 690, 2001.

56. Scoon GS, Hopkins WG, Mayhew S, and Cotter JD. Effect of post-exercise sauna bathing on the endurance performance of competitive male runners. J Sci Med Sport 10: 259–262, 2007.

57. Stevens CJ, Heathcote SL, Plews DJ, Laursen PB, and Taylor L. Effect of two- weeks endurance training wearing additional clothing in a temperate outdoor environment on performance and

physiology in the heat. Temperature 5: 267–275, 2018.

58. Stevens CJ, Plews DJ, Laursen PB, Kittel AB, and Taylor L. Acute physiological and perceptual responses to wearing additional clothing while cycling outdoors in

a temperate environment: A practical method to increase the heat load. Temperature 4: 414–419, 2017.

59. Taylor NAS. Human heat adaptation. In: Comprehensive Physiology (Vol. 4). Hoboken, NJ: John Wiley & Sons, Inc., 2014. pp. 325–365.

60. Trangmar SJ and Gonza ́ lez-Alonso J. Heat, hydration and the human brain, heart and skeletal muscles. Sports Med 49: 69–85, 2019.

61. Tucker R, Marle T, Lambert EV, and Noakes TD. The rate of heat storage mediates an anticipatory reduction in exercise intensity during cycling at a fixed rating of perceived exertion. J Physiol 574: 905–915, 2006.

62. Vihma T. Effects of weather on the performance of marathon runners. Int J Biometeorol 54: 297–306, 2010.

63. Wingo JE, Lafrenz AJ, Ganio MS, Edwards GL, and Cureton KJ. Cardiovascular drift is related to reduced maximal oxygen uptake during heat stress. Med Sci Sports Exerc 37: 248–255, 2005.

64. Zurawlew MJ, Mee JA, and Walsh NP. Post-exercise hot water immersion elicits heat acclimation adaptations in endurance trained and recreationally active individuals. Front Physiol 9: 1824, 2018.

65. Zurawlew MJ, Walsh NP, Fortes MB, and Potter C. Post-exercise hot water immersion induces heat acclimation and improves endurance exercise performance in the heat. Scand J Med Sci Sports 26: 745–754, 2016.返回搜狐,查看更多